Kepler 16b

Posted : admin On 1/29/2022

Kepler-16b: Safe in a Resonance Cell

Abstract

This discovery confirms that Kepler-16b is an inhospitable, cold world about the size of Saturn and thought to be made up of about half rock and half gas. The parent stars are smaller than our sun. One is 69 percent the mass of the sun and the other only 20 percent. Kepler-16b orbits around both stars every 229 days, similar to Venus’ 225-day. Kepler-16b is an extrasolar planet. It is a Saturn-mass planet consisting of half gas and half rock and ice, and it orbits a binary star, Kepler-16, with a p. 09.15.11 - This artist's concept illustrates Kepler-16b, the first planet known to definitively orbit two stars - what's called a circumbinary planet. The planet, which can be seen in the foreground, was discovered by NASA's Kepler mission. The two orbiting stars regularly eclipse each other, as. Kepler-16b: a resonant survivor 2012 POPOVA E. How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b and Kepler 35b 2012 PAARDEKOOPER S.-J., LEINHARDT Z., THEBAULT Ph. Kepler-16b Kepler-16b was the Kepler telescope’s first discovery of a planet in a “circumbinary” orbit– circling two stars, as opposed to one star in a double-star system. Like Luke Skywalker's home planet Tatooine, Kepler-16b would have two sunsets if you could stand on its surface.

The planet Kepler-16b is known to follow a circumbinary orbit around a system of two main-sequence stars. We construct stability diagrams in the 'pericentric distance-eccentricity' plane, which show that Kepler-16b is in a hazardous vicinity to the chaos domain—just between the instability 'teeth' in the space of orbital parameters. Kepler-16b survives, because it is close to the stable half-integer 11/2 orbital resonance with the central binary, safe inside a resonance cell bounded by the unstable 5/1 and 6/1 resonances. The neighboring resonance cells are vacant, because they are 'purged' by Kepler-16b, due to overlap of first-order resonances with the planet. The newly discovered planets Kepler-34b and Kepler-35b are also safe inside resonance cells at the chaos border.


Publication:
Pub Date:
June 2013
DOI:
10.1088/0004-637X/769/2/152
arXiv:
arXiv:1207.0101
Kepler
Bibcode:
2013ApJ...769..152P
Keywords:
  • planets and satellites: dynamical evolution and stability;
  • planets and satellites: formation;
  • planets and satellites: individual: Kepler-16b Kepler-34b Kepler-35b;
  • Astrophysics - Earth and Planetary Astrophysics;
  • Nonlinear Sciences - Chaotic Dynamics
E-Print:
17 pages, including 5 figures
NameKepler-16 (AB) b
Planet StatusConfirmed
Discovered in2011
Mass0.333 ( -0.016+0.016 ) MJ
Mass*sin(i)
Semi-Major Axis0.7048 (± 0.001) AU
Orbital Period228.776 ( -0.037+0.037 ) day
Eccentricity0.00685 ( -0.00146+0.00146 )
ω318.0 ( -22.0+22.0 ) deg
Tperi
Radius0.7538 ( -0.0023+0.0023 ) RJ
Inclination90.0322 ( -0.0023+0.0023 ) deg
Update2013-08-30
Detection MethodPrimary Transit
Mass Detection Method
Radius Detection Method
Primary transit2455212.12316 JD
Secondary transit
λ
Impact Parameter b
Time Vr=0
Velocity Semiamplitude K
Calculated temperature
Measured temperature
Hottest point longitude
Geometric albedo
Surface gravity log(g/gH)
Alternate Names

Star

Kepler-16 (AB)
NameKepler-16 (AB)
Distance
Spectral typeK
Apparent magnitude V12.0
Mass0.8499 (± 0.017) MSun
Age
Effective temperature4450.0 (± 150.0) K
Radius0.65 (± 0.0) RSun
Metallicity [Fe/H]-0.3 (± 0.2)
Detected Disc
Magnetic Field
RA200019:16:18.0
Dec2000+51:45:27
Alternate Names
Planetary system 1 planet

Remarks

Alias KIC 12644769
Alias 2MASS 19161817+5145267

03 May 2012: Revised parameters (Bender et al. 2012):
- MA = 0.654 ± 0.017 MSun
- MB = 0.1959 ± 0.0031 MSun
- e = 0.15894 ± 0.00079
- ω = 263.287 ± 0.041 deg.
13 Sep 2011: Kepler 16 is an eclisping binary star with a 41.0781 day period with two K or M components (Slawson et al. 2011).

The mass given to Kepler-16(AB) is the sum of the masses of components A and B.
The parameters for the individual components are (in solar units - Doyle et al. 2011):
Star A:
Mass: 0.6897 ± 0.0035
Radius: 0.6489 ± 0.0013
Temp.: 4450 ± 150 K
[Fe/H]: -0.3 ± 0.2
Star B:
Mass: 0.20255 ± 0.00065
Radius: 0.22623 ± 0.00059
Binary system:
Period: 41.079 ± 0.000078 day
Semi-maj. axis: 0.224 ± 0.00035 AU
Inclination: 90.3401 ± 0.0019 deg.
Ecc.: 0.15944 ± 0.0006

More data

  • Most recent references (ADS)

Remarks

13 Sep 2011: The planet Kepler-16 b was first suspected by Slawson et al. 2011.

Related publications

Circumbinary habitable zones in the presence of a giant planet
2021 GEORGAKARATOS N., EGGL S. & DOBBS-DIXON I.
Frontiers in Astronomy and Space Sciences, accepted
arxiv

On the Estimation of Circumbinary Orbital Properties
2021 BROMLEY B. & KENYON S.
Astron. J., 161, 25
paperarxiv

On the Detection of Habitable Trojan Planets in the Kepler Circumbinary Systems
2021 SUDOL J. & HAGHIGHPOUR N.
Astron. J., 161, 223
paperarxiv

Effects of Flux Variation on the Surface Temperatures of Earth-analog Circumbinary Planets
2020 YADAVELLI S., QUARLES B., LI G. & HAGHIGHIPOUR N.
MNRAS, 499, 1506
paper

VPLanet: The Virtual Planet Simulator
2020 BARNES R., LUGER R., DEITRICK R., DRISCOLL P., QUINN Th. et al.
PASP, 132, 024502
paperarxiv

Tidal evolution of circumbinary systems with arbitrary eccentricities: applications for Kepler systems
2020 ZOPPETTI F., LEIVA A. & BEAUGE C.
Astron. & Astrophys., 634, A12
paperarxiv

Circumbinary Planets -- The Next Steps
2020 MARTIN D.
Universe of Binaries, Binaries in the Universe, Telc, Czech Rep
arxiv

Orbital Evolution of a Circumbinary Planet in a Gaseous Disk
2019 YAMANAKA A. & SASAKI T.
Earth, Planets and Space, accepted
arxiv

Instabilities in Multi-Planet Circumbinary Systems
2019 SUTHERLAND A. & KRATTER K.
MNRAS, 487, 3288
paperarxiv

Circumbinary discs with radiative cooling and embedded planets
2019 KLEY W., THUN D. & PENZLIN A.
Astron. & Astrophys., 627, A91
paperarxiv

The binary mass ratios of circumbinary planet hosts
2019 MARTIN D.
MNRAS, in press
paperarxiv

Stability Limits of Circumbinary Planets: Is There a Pile-up in the Kepler CBPs?
2018 QUARLES B., SATYAL S., KOSTOV V., KAIB N. & HAGHIGHIPOUR N.
ApJ, 856, 150
paperarxiv

Simulations of the dynamics of the debris disks in the systems Kepler-16, Kepler-34, and Kepler-35
2018 DEMIDOVA T. & SHEVCHENKO I.
Astron. Lett., 44, 119
arxiv

Accurate Computation of Light Curves and the Rossiter-McLaughlin Effect in Multi-Body Eclipsing Systems
2018 SHORT D., OROSZ J., WINDMILLER G. & WELSH W.
Astron. J., accepted
arxiv

The Habitable Zone of Kepler-16: Impact of Binarity and Climate Models
2018 MOORMAN S., QUARLES B., WANG Zh. & CUNTZ M.
Int. J. Astrobiol., in press
paper

Secular Dynamics of Multiplanetary Circumbinary Systems
2017 ANDRADE-INES E. & ROBUTEL Ph.
Cel. Mech. & Dyn. Astron., 130
arxivpaper

The Role of Disc Self-Gravity in Circumbinary Planet Systems: II. Planet Evolution
2017 MUTTER M., PIERENS A. & NELSON R.
MNRAS, 469, 4504
paperarxiv

On the stability of circumbinary planetary systems
2016 POPOVA E. & SHEVCHENKO I.
Astron. Lett., 42, 474
paperADS

Modelling circumbinary protoplanetary disks. II. Gas disk feedback on planetesimal dynamical and collisional evolution in the circumbinary systems Kepler-16 and 34
2016 LINES S., LEINHARDT Z., BARUTEAU C., PAARDEKOOPER S.-J., & CARTER P.
Astron. & Astrophys., 590, A62
paperarxivADS

Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets
2016 ZULUAGA J., MASON P. & CUARTAS-RESTRPO P.
ApJ, 816, 160
paperarxivADS

Circumbinary planets II - when transits come and go
2016 MARTIN D.
MNRAS, 465, 3235
paperarxivADS

Planet formation around binary stars: Tatooine made easy
2015 BROMLEY B. & KENYON S.
ApJ, 806, 98
paperarxivADS

Circumbinary planets - why they are so likely to transit
2015 MARTIN D. & TRIAUD A.
MNRAS, 449, 781
paperarxivADS

Analytic orbit propagation for transiting circumbinary planets
2015 GEORGAKARAKOS N. & EGGL S.
ApJ, 802, 94
paperarxivADS

Modelling circumbinary protoplanetary disks: I. Fluid simulations of the Kepler-16 and 34 systems
2015 LINES S., LEINHARDT Z., BARUTEAU C., PAARDEKOOPER S.-J., & CARTER P.
Astron. & Astrophys., 582, A5
paperarxivADS

Stable Conic-Helical Orbits of Planets around Binary Stars: Analytical Results
2015 OKS E.
ApJ, 804, 106
paperADS

Birth Locations of the Kepler Circumbinary Planets
2015 SILSBEE K. & RAFIKOV R.
ApJ, 808, 58
paperarxivADS

A dynamical stability study of Kepler Circumbinary planetary systems with one planet
2014 CHAVEZ C., GEORGAKAROS N., PRODAN S., REYES-RUIZ M., ACEVES et al.
MNRAS, 446, 1283
paperarxiv

The Occurrence and Architecture of Exoplanetary Systems
2014 WINN J. & FABRYCKY D.
Ann. Rev. Astron. Astrophys., submitted
arxiv

Surface Flux Patterns on Planets in Circumbinary Systems, and Potential for Photosynthesis
2014 FORGAN, D., MEAD, A., COCKELL & J. RAVEN
International J. of Astrobiology, 14, 465
paperarxivADS

Transits of Planets with Small Intervals in Circumbinary Systems
2014 LIU H.-G., WANG S., ZHANG H., ZHOU J.-L.,
ApJ, 790, 141
paperarxivADS

Planets Transiting Non-Eclipsing Binaries
2014 MARTIN D. & TRIAUD A.
Astron. & Astrophys., 570, A91
paperarxivADS

Habitable Zones with Stable Orbits for Planets around Binary Systems
2014 JAIME L., AGUILAR L. & PICHARDO M.
MNRAS, submitted
arxiv

Assessing Circumbinary Habitable Zones using Latitudinal Energy Balance Modelling
2013 FORGAN D.
MNRAS, accepted
arxiv

Kepler-16b: Safe in a Resonance Cell
2013 POPOVA E. & SHEVCHENKO I.
ApJ, 769, 152
paper

Formation of circumbinary planets in a dead zone
2013 MARTIN R., ARMITAGE Ph. & ALEXANDER R.
ApJ, accepted
arxiv

Migration and gas accretion scenarios for the Kepler 16, 34 and 35 circumbinary planets
2013 PIERENS A. & NELSON R.
Astron. & Astrophys., in press
paperarxiv

Placing Limits On The Transit Timing Variations Of Circumbinary Exoplanets
2013 ARMSTRONG D., MARTIN D., BROWN G., FAEDI F., GOMEZ MAQUEO CHEW Y. & 4 additional authors
MNRAS, submitted
arxiv

The curiously circular orbit of Kepler-16b
2013 DUNHILL A. & ALEXANDER R.
MNRAS, in press
paperarxiv

Recent Kepler Results On Circumbinary Planets
2013 WELSH W., OROSZ J., CARTER J. & FABRYCKY D.
in 'The Formation, Detection, and Characterization of Extrasolar Habitable Planets'
arxiv

Circumbinary Planet Formation in the Kepler-16 System. II. A Model for In-situ Planet Formation within a Debris Belt
2013 MESCHIARI S.
ApJ, 790, 41
paperarxiv

Kepler-16b: a resonant survivor
2012 POPOVA E. & SHEVCHENKO I.
arxiv

How not to build Tatooine: the difficulty of in situ formation of circumbinary planets Kepler 16b, Kepler 34b and Kepler 35b
2012 PAARDEKOOPER S.-J., LEINHARDT Z., THEBAULT Ph. & BARUTEAU C.
ApJ. Letters, 754, L16
paperarxiv

Characterization of exoplanets from their formation II: The planetary mass-radius relationship
2012 MORDASINI Ch., ALIBERT Y., GEORGY C., DITTKRIST K.-M., KLAHR H. & HENNING Th.
Astron. & Astrophys., 547, A112
paperarxiv

Regions of Dynamical Stability for Discs and Planets in Binary Stars of the Solar Neighborhood
2012 JAIME L., PICHARDO M. & AGUILAR L.
MNRAS, 427, Issue 4, 2723-2733
paperarxiv

The SDSS-HET Survey of Kepler Eclipsing Binaries: Spectroscopic Dynamical Masses of the Kepler-16 Circumbinary Planet Hosts
2012 BENDER Ch., MAHADEVAN S., DESHPANDE R., WRIGHT J., ROY A. & 5 additional authors
ApJ. Letters, 751, L31
paperarxiv

A Correlation Between the Eclipse Depths of Kepler Gas Giant Candidates and the Metallicities of their Parent Stars
2012 DODSON-ROBINSON S.
ApJ., 752, Issue 1, 72, 9 pp
paperarxiv

Circumbinary Planet Formation in the Kepler-16 system. I. N-body Simulations
2012 MESCHIARI
ApJ., 752, 71
paperarxiv

A Uniformly Derived Catalogue of Exoplanets from Radial Velocities
2012 HOLLIS M., BALAN S., LEVER G. & LAHAV O.
MNRAS, 423, Issue 3, 2800-2814
paperarxiv

Habitability of Earth-type Planets and Moons in the Kepler-16 System
2012 QUARLES B., MUSIELAK Z. & CUNTZ M.
ApJ. Letters
arxiv

An Analytic Theory for the Orbits of Circumbinary Planets
2012 LEUNG G. & LEE M.
ApJ, 763, 107
paperarxiv

On the Habitable Zones of Circumbinary Planetary Systems
2012 KANE S. & HINKEL N.
ApJ, 762, 7
<paper a target= '_blank' href= 'http://arxiv.org/abs/1211.2812'>arxiv

On The Existence Of Earth-like Planets In The Circumbinary System Kepler-16
2011 QUARLES B., MUSELIAK Z. & CUNTZ M.
BAAS, 44, no1, 125.03
abstract

Kepler 16b Size

Spin-Orbit Alignment for the Circumbinary Planet Host Kepler-16A
2011 WINN J., ALBRECHT S., JOHNSON J., TORRES G., COCHRAN W. &
ApJ. Letters, 741, L1
paperarxiv

Kepler-16: A Transiting Circumbinary Planet
2011 DOYLE L., CARTER J., FABRYCKY D., SLAWSON R., HOWELL S. & 45 additional authors
Science, 333, 1602
paperarxiv

The Exoplanet Handbook
2011 Michael Perryman
Content
Content and Chapter 5

Kepler 16: A System of Potential Interest to Astrobiologists
2011 HEATH M. & DOYLE L.
arxiv

Kepler Eclipsing Binary Stars. II. 2165 Eclipsing Binaries in the Second Data Release
2011 SLAWSON R., PRSA A., WELSH W., OROSZ J., RUCKER M. & 19 additional authors
Astron. J.
arxiv

Kepler 16b Orbiting Two Suns

On the occultations of a binary star by a circum-orbiting dark companion
1994 SCHNEIDER J.
Planet. & Spa. Sci., 42, 539
paper

Kepler 16b Orbit

The photometric search for earth-sized extrasolar planets by occultation in binary systems
1990 SCHNEIDER J. & CHEVRETON M.
Astron. & Astrophys., 232, 251
paper